Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Drug Dev Res ; 85(3): e22181, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38619209

RESUMO

The involvement of lipoxygenases in various pathologies, combined with the unavailability of safe and effective inhibitors of the biosynthesis of their products, is a source of inspiration for the development of new inhibitors. Based on a structural analysis of known inhibitors of lipoxygenase products biosynthesis, a comprehensive structure-activity study was carried out, which led to the discovery of several novel compounds (16a-c, 17a) demonstrating promising potency to inhibit the biosynthesis of products of 5-, 12- and 15-LO. Compounds 16b and 16c outperformed zileuton (1), the only FDA-approved 5-LO inhibitor, as well as known inhibitors such as caffeic acid phenethyl ester (CAPE (2)) and cinnamyl-3,4-dihydroxy-α-cyanocinnamate (CDC (4)). However, the introduction of a cyano group at the α-position of the carbonyl abolished the activity. Compounds 16a and 17a also inhibited the biosynthesis of 12- and 15-LO products. Compounds 16a, 17a far surpassed baicalein, a known 12-LO inhibitor, as inhibitors of 12-LO products biosynthesis. Compound 17a and CDC (4) showed equivalent inhibition of LO products, proposing that the double bond in the ester moiety is not necessary for the inhibitory activity. The introduction of the cyano group, as in compound 17a, at the α-position of the carbonyl in compound 16a significantly reduced the inhibitory activity against the biosynthesis of 15-LO products. In addition to the interactions with residues His372 and Phe421 also found with zileuton and CAPE, compounds 16a and 16c each interact with residue His367 as shown by molecular docking. This new interaction may explain their high affinity with the 5-LO active site.


Assuntos
Araquidonato 15-Lipoxigenase , Cinamatos , Hidroxiureia/análogos & derivados , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade
2.
FASEB J ; 37(11): e23222, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37781970

RESUMO

The mechanisms that underpin aging are still elusive. In this study, we suggest that the ability of mitochondria to oxidize different substrates, which is known as metabolic flexibility, is involved in this process. To verify our hypothesis, we used honey bees (Apis mellifera carnica) at different ages, to assess mitochondrial oxygen consumption and enzymatic activities of key enzymes of the energetic metabolism as well as ATP5A1 content (subunit of ATP synthase) and adenylic energy charge (AEC). We also measured mRNA abundance of genes involved in mitochondrial functions and the antioxidant system. Our results demonstrated that mitochondrial respiration increased with age and favored respiration through complexes I and II of the electron transport system (ETS) while glycerol-3-phosphate (G3P) oxidation was relatively decreased. In addition, glycolytic, tricarboxylic acid cycle and ETS enzymatic activities increased, which was associated with higher ATP5A1 content and AEC. Furthermore, we detected an early decrease in the mRNA abundance of subunits of NADH ubiquinone oxidoreductase subunit B2 (NDUFB2, complex I), mitochondrial cytochrome b (CYTB, complex III) of the ETS as well as superoxide dismutase 1 and a later decrease for vitellogenin, catalase and mitochondrial cytochrome c oxidase subunit 1 (COX1, complex IV). Thus, our study suggests that the energetic metabolism is optimized with aging in honey bees, mainly through quantitative and qualitative mitochondrial changes, rather than showing signs of senescence. Moreover, aging modulated metabolic flexibility, which might reflect an underpinning mechanism that explains lifespan disparities between the different castes of worker bees.


Assuntos
Envelhecimento , Mitocôndrias , Abelhas , Animais , Antioxidantes , Consumo de Oxigênio , RNA Mensageiro
3.
Molecules ; 25(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066378

RESUMO

A novel series of zileuton-hydroxycinnamic acid hybrids were synthesized and screened as 5-lipoxygenase (5-LO) inhibitors in stimulated HEK293 cells and polymorphonuclear leukocytes (PMNL). Zileuton's (1) benzo[b]thiophene and hydroxyurea subunits combined with hydroxycinnamic acid esters' ester linkage and phenolic acid moieties were investigated. Compound 28, bearing zileuton's (1) benzo[b]thiophene and sinapic acid phenethyl ester's (2) α,ß-unsaturated phenolic acid moiety 28, was shown to be equipotent to zileuton (1), the only clinically approved 5-LO inhibitor, in stimulated HEK293 cells. Compound 28 was three times as active as zileuton (1) for the inhibition of 5-LO in PMNL. Compound 37, bearing the same sinapic acid (3,5-dimethoxy-4-hydroxy substitution) moiety as 28, combined with zileuton's (1) hydroxyurea subunit was inactive. This result shows that the zileuton's (1) benzo[b]thiophene moiety is essential for the inhibition of 5-LO product biosynthesis with our hydrids. Unlike zileuton (1), Compound 28 formed two π-π interactions with Phe177 and Phe421 as predicted when docked into 5-LO. Compound 28 was the only docked ligand that showed a π-π interaction with Phe177 which may play a part in product specificity as reported.


Assuntos
Ácidos Cumáricos/química , Hidroxiureia/análogos & derivados , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/farmacologia , Araquidonato 5-Lipoxigenase/química , Araquidonato 5-Lipoxigenase/metabolismo , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/farmacologia , Células HEK293 , Humanos , Hidroxiureia/química , Inibidores de Lipoxigenase/síntese química , Simulação de Acoplamento Molecular , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...